|
楼主 |
发表于 2013-6-2 22:14
|
显示全部楼层
信号发生器可以用来调测滤波器,典型的就是带通滤波器和电台上用的双工器。调测滤波器的理想仪器二字线——网络分析仪和扫频仪,其主要功能部件之一就是信号发生器。在没有这些高级仪器的情况下,信号发生器配合高频电压测量工具,如超高频毫伏表、频率足够高的示波器、测量接收机等,也能勉强调试滤波器,其基本原理是测量滤波器带通频段内外对信号的衰减情况。信号发生器在此扮演的是标准信号源的角色,信号发生器产生一个相对比较强的已知频率和幅度信号,从滤波器或者双工器的INPUT端输入,测量输出端信号衰减情况。带通滤波器要求带内衰减尽量小,带外衰减尽量大,而陷波器正好相反,陷波频点衰减越大越好。因为普通的信号发生器都是固定单点频率发射的,所以调测滤波器需要采用多个测试点来“统调”。如果有扫频信号源和配套的频谱仪,就能图示化地看到滤波器的全面频率特性,调试起来极为方便。
信号发生器可以用来校准对讲机和接收机的信号强度表,信号发生器在此扮演的是标准信号源的角色。按照各机型的维修手册要求,在校准频点输入特定强度的信号,此时校正S信号强度表的实际指示。在实际调整中,我们可以看到,虽然国际上有接收机S信号表指示的参考场强标准,但现在很多厂家都执行自家的标准,使S表指示偏大而指示范围偏小,给用户的感觉就是S表指示很容易满表,暗示用户它的接收灵敏度高。
除了在射频方面的应用,信号发生器在音频领域也有广泛的应用。
信号发生器用于对讲机话音电路和调制电路的调测。信号发生器代替驻极体拾音器向对讲机的“MIC in”送入符合要求的1kHz单音信号(输入幅度要求在维修手册会有标明),然后使调频对讲机处于发射状态。正常情况下,在接收机中会听到1kHz的音频,通过调制度仪,可以测量出被测对讲机的调制幅度。由此,可以检测和调整调频对讲机的语音调制电路(调制度一般在对讲机内部可调整)。一般25kHz间隔FM调制的对讲机,要求在1kHz音频下调制度在4.5kHz左右。调频对讲机调制过小,语音会偏轻,调制过大,会影响话音,并增加占用带宽。有的发射无语音故障的对讲机,也可以通过类似方法从MIC in开始逐级测量语音信号状况。
信号发生器用于音频功放的维修。信号发生器在此扮演的是理想信号源的角色。信号源产生一个适当幅度的音频正弦信号,作为音频功放的信号输入。通过测量音频功放的输出幅度和波形,我们可以判断音频功放电路工作是否基本正常,包括是否有自激等不正常状态以及失真情况。
信号发生器的基本原理
现代信号发生器的结构非常复杂,与早期的简易信号发生器天差地别,但总体基本结构功能单元还是类似的。信号发生器的主要部件有频率产生单元、调制单元、缓冲放大单元、衰减输出单元、显示单元、控制单元。早期的信号发生器都采用模拟电路,现代信号发生器越来越多地使用数字电路或单片机控制,内部电路结构上有了很大的变化。
频率产生单元是信号发生器的基础和核心。早期的高频信号发生器采用模拟电路LC振荡器,低频信号发生器则较多采用文氏电桥振荡器和RC移相振荡器。由于早期没有频率合成技术,所以上述LC、RC振荡器优点是结构简单,可以产生连续变化的频率,缺点是频率稳定度不够高。早期产品为了提高信号发生器频率稳定度,在可变电容的精密调节方面下了很多功夫,不少产品都设计了精密的传动机构和指示机构,所以很多早期的高级信号发生器体积大、重量重。后来,人们发现采用石英晶体构成振荡电路,产生的频率稳定,但是石英晶体的频率是固定的,在没有频率合成的技术条件下,只能做成固定频率信号发生器。之后也出现过压控振荡器,虽然频率稳定度比LC振荡器好些,但依然不够理想,不过压控振荡器摆脱了LC振荡器的机械结构,可以大大缩减仪器的体积,同时电路不太复杂,成本也不高。现在一些低端的函数信号发生器依然采用这种方式。
随着PLL锁相环频率合成器电路的兴起,高档信号发生器纷纷采用频率合成技术,其优点是频率输出稳定(频率合成器的参考基准频率由石英晶体产生),频率可以步进调节,频率显示机构可以用数字化显示或者直接设置。早期的高精度信号发生器为了得到较小的频率步进,将锁相环做得非常复杂,成本很高,体积和重量都很大。目前的中高端信号发生器采用了更先进的DDS频率直接合成技术,具有频率输出稳定度高、频率合成范围宽、信号频谱纯净度高等优点。由于DDS芯片高度集成化,所以信号发生器的体积很小。
信号发生器的工作频率范围、频率稳定度、频率设置精度、相位噪声、信号频谱纯度都与频率产生单元有关,也是信号发生器性能的重要指标。
|
|