|
楼主 |
发表于 2012-11-24 18:21
|
显示全部楼层
半波振子的匹配馈电
在弦乐器中,琴弦就是一个半波振子,只不过是机械的,而非电磁的。琴弦的两端被固定,不能振动,成为波节。琴弦的中点振幅总是最大,是波腹。为了要使琴弦得到有效的驱动,我们要选择适当的驱动点。当搓动琴弦的压力较大而随琴弦振动的位移幅度较小时(阻抗较大),例如提琴和胡琴的拉弓,我们就要选择琴弦张力较大而振幅较小的端部来驱动。当搓动琴弦的力量较小而随琴弦移动的幅度较大时(阻抗较小),例如洋琴和筝,我们就要选择琴弦张力较小而振幅较大的中间部位来驱动。这样效果才好,否则琴的发音就不会响亮。
半波天线振子也是一样。靠近端点处电流小、电压高,适合于高阻抗驱动。靠近中点电流大、电压低,适合于低阻抗驱动。总之,只有当天线阻抗和馈线的阻抗匹配时,才会有最佳的驱动效率。
如果我们断开自由空间半波振子的中点,得到的两个馈电点之间的阻抗为50-82欧,正好可以直接用50欧同轴电缆和通常的输出阻抗为50欧的收发信机匹配连接。这样的天线也可以看作是从馈电点向两侧对称伸出两臂,所以也常叫做偶极天线或双极天线(图12上)。
当然,为了保持振子的机械强度或者为了机械结构的方便,我们也可以不从中点切开半波振子,而是用两个触点在半波振子上移动(图12下),也可以找到一对阻抗为50欧的馈电点,这样的馈电结构看起来象倒过来的希腊字母π(帕爱),所以叫做π匹配(pie match)(图13)。如果收发信机的输出阻抗和馈线不是50欧,例如一些老式电子管收发信机和平行馈线采用600欧阻抗,那么只要将两个馈电点向两端移动,也可以找到阻抗为600欧的馈电点。
用上述方法得到的馈电点从电气上讲是对称(平衡)的,而馈电的同轴电缆的两极则有内芯和外屏蔽套之分,电气上是不平衡的,为了不至破坏天线的某些性能,常常需要在天线与馈线之间接进一个平衡-不平衡转换器(balun, balance-unbalance converter)。其实也可以用选择适当馈电点的办法来省略这个balun。因为半波振子的中点是对称点,我们可以把馈电电缆的外屏蔽套接在振子中点,这样接地的外屏蔽套不会破坏天线的对称。我们用一个触点在振子的一边移动,一定可以找到一个与中点之间呈现50阻抗的点,作为电缆芯线的连接点。电缆芯线从振子中点到这个连接点具有一定长度,比电缆外屏蔽套长了一段,破坏了馈电线本身的对称,为了补偿这一线段的额外电感,需要在电缆芯线中串连一个电容器,可以采用微调电容以便准确调整。这样的馈电结构看起来象希腊字母γ(伽马),所以叫做“γ匹配(gamma match)”(图14)。
有时从半波振子中间馈电有困难。例如只能从机房向外拉一根hf频段的半波天线,或者从地面树一根半波垂直天线。这时我们可以根据上面的原理,从天线靠近一端的地方断开,得到一对高阻抗馈电点,再用一个高频变压器把高阻抗馈电点的阻抗变换到50欧姆,通过50欧馈线连接到50欧收发信机上。太高的阻抗会带来过高的电压/电流比,造成绝缘问题,所以一般将馈电点的阻抗选择在数百欧左右,也就是说馈电点与端点之间还是要留一定的长度(图15)。端馈水平振子曾经被使用在1940年代的齐柏林飞艇上,所以也曾叫齐柏林天线。美国churshcraft公司的r-7000天线就是属于这样的垂直半波长振子。它的馈电点一端在振子下端,另一端接在由四根不锈钢丝做成的对极体(counterpoise)上,它们相当于馈电点与端点之间的那一段。注意,“对极体”只相当于振子下端很少一部分,与有些1/4波长垂直接地天线中外形相似但要起1/4振子作用的“人工地网(ground plane)”不是一回事。
在一些特殊情况下,从中间和一端馈电都有困难,或者馈线的输出阻抗是一个特定值,那么也可以采用从半波振子的其它适当位置馈电的办法。例如40年代流行过的winton天线就是一例。
如果振子本身是谐振的,但利用改变馈电点位置的办法取得匹配的办法实在无法施行,那么也可以用插入适当阻抗比的高频变压器来达到阻抗匹配,例如图15中的阻抗变换器。
上述的馈电原理无论对于hf还是vhf、uhf频段都是适用的。当半波振子演变成其它类型的天线时,也还是适用的。
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有账号?立即注册
x
|